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Abstract—This paper considers the problem of clustering 
vector-valued datasets whose replicate observations are 
contaminated by weighted additive zero-mean white 
measurement noise. A corresponding error model of the cluster 
centroid is developed. Subsequently, an optimal iterative 
algorithm is proposed for updating cluster centroids obtained by 
using the k-means algorithm implemented on each set of noisy 
observations. The gain of the proposed algorithm aims for per-
iteration minimization of the mean square estimate error. Three 
other methods are considered for performance evaluation. A 
numerical toy example is presented in order to illustrate the 
performance capabilities of the proposed method. 
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I. INTRODUCTION  

Problems in clustering algorithms can arise when on top of 
some cluster structure or groups of similar objects the data also 
contains an unstructured subset of points or outliers. This 
unstructured subset is referred to as noise or background noise 
in literature of machine learning (e.g., see, [1]-[6]). Such noise 
issues tend to disrupt the recovery of the cluster structure and 
robustness examination of clustering algorithm in presence of 
unstructured subset is anticipated (e.g., see, [2]-[5]).    

Another class of problems associated with clustering 
algorithms arises when the datasets are contaminated by noise 
due to experimental random measurement errors such as in 
biological processes (e.g., see, [7]-[13]). As illustrated in [13], 
substantial noisy measurements could lead to 
misinterpretations of the relationships between members of 
different clusters.  In order to reduce the effect of noise several 
replicate measurements of datasets are needed [7] and [11]. For 
example, the study in [11] shows that 10 to15 replicates yield 
stable results when considering gene expression microarray 
experiments. A study on the relationship between experimental 
replication and clustering precision is presented in [10]. One 
approach for handling noisy data is based on weighted 
averaging of the noisy data using analytical distribution of the 
data [8]-[9]. Another approach applies clustering algorithm on 
the collected data obtained from all the replicates expanded 
[12]. The most common approach for clustering experimental 
data is achieved by clustering the averages of replicate 
measurements [13]. However, the latter may not be applicable 
when the standard deviation of the noise is large with respect to 
the norm between neighboring objects.  

This paper considers the case where covariance norm of the 
measurement errors may vary from replicate to replicate. In 
order to motivate this situation, we consider a measuring 
device installed on a vehicle where the vehicle is in motion and 
where the measurement error increases as the distance between 
the measuring device and targeted objects increases. To the 
knowledge of the author, no such problem has been studied in 
the relevant literature. We consider vector-valued datasets 
whose replicate observations are contaminated by weighted 
additive zero-mean white measurement noise. The latter is 
inspired by the error model considered in [14]. The problem 
under consideration is the estimation of clusters centroids using 
all the noisy replicate measurements of datasets.  We develop a 
corresponding error model of cluster centroids and propose an 
optimal iterative algorithm for updating the cluster centroids. 
We consider the centroids obtained by using the k-means 
algorithm implemented on each set of noisy observations as the 
input to our proposed algorithm. The gain of the proposed 
algorithm is obtained by minimizing the trace of estimate error 
covariance matrix. Three other methods are considered. One 
method extract the cluster centroids from observations of 
datasets associated with smallest covariance norm of the 
measurement errors, another method resembles the one in [12], 
and one method averages all cluster centroids obtained using 
each replicate. We compare the performance of the proposed 
method with the other three methods under consideration on a 
two-dimensional toy example.    

The rest of the paper is organized as follows. Section II 
formulates the problem under consideration and presents the 
proposed algorithm and describes three other methods followed 
by an example in Section III. The paper ends with conclusions. 

II. MAIN RESULTS  

 This section formulates the problem under consideration 
and presents the proposed iterative algorithm and three other 
methods for estimating the cluster centroids in presence of 
replicate noisy observations. 

A. Problem formulation 

Let , , … ,  be a dataset of precise observations 
where ∈ , 1 . Let , , … ,  be a set of 
clusters with ⊂ . The cluster centroids, ∈ , for 
1  are obtained such that  

                   argmin ∑ ∑ ∈                        (1)  



where ‖. ‖ is the Euclidean distance and  is the cluster 
centroid or center of cluster ,  which is the average of points 

in ; that is, ∑  where  is the number of 

associated points in  and ∈ . The k-means is one of the 
simplest learning algorithms that solve this well-known 
clustering problem (1).  

In this work we consider a class of noisy  replicates of 
the dataset. In particular, we assume that the erroneous 
observation at replicate, , is given by 

     ̂ ,     1 , 1         (2) 

 where ∈  is a zero-mean white Gaussian random 
process, and ∈  is a known deterministic function. 
Therefore, the covariance of the observation error, ≜

̂ , is E , where E .  
is the expectation operator and ≜ E .  

It is important to note that when applying a clustering 
algorithm (e.g., k-means) on the  noisy replicate (2), then 
we obtain cluster  with number of corresponding points 

 and centroid ̂ , which are likely different than , 
 and , respectively.   

B. Proposed Algorithm 

The problem addresses estimation of cluster centroids using 
noisy  replicates of observation (2). For each noisy set of 
replicates ̂ , ̂ , … , ̂  application of the k-
means algorithm results in clusters  with number of 
points , and cluster centroid ̂ , where  ̂

∑ ̂ . By making use of (2), we obtain 

             ̂ ∑                 (3) 

where ∈ . The optimal  cluster centroid, in the 

sense of (1), corresponds to ∑  at steady-state of 

sequential k-means algorithm. Consequently, we consider 
̂  as a measurement to  with measurement error given by 

    ≜ ̂ ∑     (4) 

where ≜ ∑ ∑ . 

We propose the following iterative algorithm for updating 
the  cluster centroid 

               ̅ 1 ̅ ̅ ̂        (5) 

where ̅ 1 ̂ 1  and ∈  is a learning gain.  

Remark 1: It is important to note that ̅ 1  in (5) is not 
meant to predict the estimate of  during the next 1  
observation but instead it is meant to estimate  while using 
̂ . The proposed update (5) resembles the a posteriori state 

estimate update of a Kalman filter. However, the problem 
under consideration does not deal with state prediction and the 
model under consideration does not involve time or a 

difference/differential equation. In what follows we derive the 
optimal gain  by minimizing the mean square estimate 
error, which also resembles the Kalman filter approach. ▄ 

Define ≜ ̅  to be the update error of the 
algorithm (5). Inserting (4) in (5) and subtracting both sides 
from  yields 

        1       (6) 

Since  is assumed to be a zero-mean white random process 

and ∑ , then E ≅ 0, using 

an induction argument E 0 and for 2, 
E 0. Arranging two terms in (6) leads to 

       1       (7) 

Consequently, (7) leads to the following update in the estimate 
error covariance matrix, ≜ E , 

1
 

(8) 

where ≜ E . 

Theorem 1. Consider the iterative algorithm proposed in (5). 
The gain  that minimizes the mean-square of 
1  at each  observation is given in the following recursive 
algorithm for all 1, 

                                    (9)         
               1                           (10) 

where 1  is a symmetric positive-definite matrix.   

Proof of Theorem 1. Expanding (8) yields 

1
 

(11) 

To minimize tr 1 , where tr .  is the trace operator, 

with respect to , we set ≡ 0 at each , 

2 2 ≡ 0. 

Therefore, . Inserting this 
optimal value of  in (11) and collecting terms lead to 	

1

 
Cancelling then collecting terms leads to (10).   ▄ 

Remark 2: The recursive algorithm in (9) and (10) require the 
knowledge of 1  and . If cluster  is the same as 

, then  (4) becomes zero. If we neglect , then  

≅ ∑ . Consequently, 

E ≅  or ≅



. Similarly, we can estimate 1 ≅

1 1 . However, since in general 0, then 

in order to accommodate for , we can add some positive-
definite matrix 0 to 1  and to . Since it is 
expected that the estimation of  improves with additional 
observations, that is as  increases, then we propose to set 

                    1 ≅ 1 1                       (12) 

                   ≅                (13) 

where 0 are considered as tuning parameters. ▄ 

The implementation of proposed strategy is shown below. 

for 1:  
1. Consider observations ̂ , 1  
2. Implement k-means to do the classification 
3. Obtain cluster  with corresponding number of 

points  and cluster centroid ̂ , 1  
4. if  1, ̅ 1 ̂ 1  and obtain 1  from (12), 

1 , end 
5. Compute  from (13), 1  
6. Obtain  from the recursive algorithm in (9) and 

(10), 1  
7. Update ̅  using (5), 1  

end 

C. Other Strategies 

We also consider three additional methods of handling 
noise in clustering. For consistency, the clustering engine is 
based on k-means algorithm, and we denote by ̂ .  the 
center of -cluster obtained by the k-means algorithm. 

Method A: This method is based on noisy observations 
associated with the replicate with least amount of noise. Since 
the observation error covariance matrix E

, then ≜ argmin ‖ ‖. 
Consequently, the estimate of cluster centroids is given by 
̅ , ≡ ̂ , 1 . 

Method B: In this method we average the clusters’ centroids 
obtained from all replicates. That is,  

̅ , ∑ ̂ , 	1 . 

Method C: The observations from all the replicates are 
expanded and then clustered using the k-means algorithm, see 
related work in [12]. That is, we extract ̅ , , 1  by 
applying the k-means algorithm on 
∪ ̂ , ̂ , … , ̂ . 

III. NUMERICAL EXAMPLE 

In this example we consider ∈ , and generate 2  
landmark points normally distributed at random in two 
clusters as follows. : 1,1 , 1 , and 
: 1, 1 , 1 2 , where ∈
0,1 0,1 . The observation errors, , ∈ 1,2 , 

are also generated at random with ∈ 0, 0, , 
where  

1 √  or 1 , 

1 . It is important to note that while considering 
, the measurement errors slowly but monotonically 

increases with additional replicate observations while 	  
increases at a faster rate then decreases at the same rate. 
Performance metric: Since the k-means algorithm minimizes 

the objective function ≜ ∑ ∑ ∈  (1), then we 

implement the k-means algorithm on the modeled precise 
landmark points , 1 2  and compute the 
corresponding . Subsequently, we compute ≜
∑ ∑ ̂∈  for each method under consideration 

while using the noisy observations and then normalize  with 

respect to , that is, ≜ .   is the performance 

metric adopted in this example.  
 

The following three scenarios are considered and 
performance of Methods A, B, C and proposed method are 
examined:  
Scenario 1: We fix 1 and 25, and examine the 
performance for different values of ; in particular, ∈
2,3, … ,20 . 

Scenario 2: We fix 1 and 10, and examine the 
performance for different values of ; in particular, ∈
10,20,… ,100 . 

Scenario 3: We fix 10 and 25, and examine the 
performance for different values of ; in particular, ∈
0.5,0.6, … ,1.5 . 

One thousand independent runs are conducted for Scenario 
2 and 10,000 independent runs for Scenarios 1 and 3 where in 
each run we generate 2  new landmark points normally 
distributed at random as described above. We apply the latter 
while using  and another separate experiment while 
using . For the proposed method, we set  as in 
(13) with 0, and 1  as in (12) with  . 
MATLAB is employed throughout all numerical simulations. 

     Performance comparison: Fig. 1 to Fig. 3 show the 
performance of all methods corresponding to Scenarios 1 to 3, 
respectively, where the top plots are based on the employment 
of  and the bottom plots are based on . By 
examining Fig. 1 to Fig. 3, the following is concluded: 

 The proposed method outperforms Methods A, B, and C 
at all levels.  

 Unlike the other methods, Fig. 1 shows that  
corresponding to the proposed method monotonically 
decreases as  increases while using  or .    

 Although Method B shows overall superiority over 
Methods A and C, Method A outperforms (Fig. 2) 
Methods B and C for 70 while using . 

 Method C shows overall superiority over Method A when 
using  and Method A shows overall superiority 
over Method C when using .   



 
Fig. 1. Scenario 1:  in function of . 

 

Fig. 2. Scenario 2.  in function of . 

 
Fig. 3. Scenario 3.  in function of . 

IV. CONCLUSION 

This paper proposed an optimal stochastic iterative 
algorithm for estimating cluster centroids in presence of noisy 
replicate measurements of datasets where the covariance of 
measurement noise may vary from replicate to replicate. Based 
on numerical simulations the superiority of the proposed 
approach over three other methods has been demonstrated. In 
addition, the performance of the proposed algorithm has been 
shown to monotonically improve with additional replicates 
where the norm of measurement noise covariance matrix 
increases at different rates as the number of replicates 
increases. That is, the proposed algorithm can robustly and 
effectively make use of the information in any replicate even 
with a large degree of measurement error variance.      
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