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A Stochastic Newton-Raphson Method with Noisy
Function Measurements
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Abstract—This letter shows that traditional Newton-Raphson
(NR) method cannot achieve zero-convergence in presence of addi-
tive noise without adding a multiplicative gain. Furthermore, this
gain needs to converge to zero. This article proposes a novel recur-
sive algorithm providing optimal iterative-varying gains associ-
ated with the NR method. The development of the proposed
optimal algorithm is based on minimizing a stochastic perfor-
mance index. The estimation error covariance matrix is shown to
converge to zero for linearized functions while considering addi-
tive zero-mean white noise. In addition, the proposed approach
is capable of overcoming common drawbacks associated with the
traditional NR method. Simulation results are included to illus-
trate the performance capabilities of the proposed algorithm. We
show that the proposed recursive algorithm provides significant
improvement over the traditional NR method.

Index Terms—Newton-Raphson method, noisy function
measurements, stochastic optimization.

I. INTRODUCTION

M ANY engineering problems make use of an optimiza-
tion setting where only noisy estimates of the objective

function are available. Localization problems based on trian-
gulation consist of two methods: lateration and angulation.
Lateration methods estimate the target location by measuring
its distances from multiple reference points whereas angula-
tion, measure angles relative to several reference points. The
needed measurements are normally noisy where the noise
depends on the technology under consideration. For exam-
ple, lateration methods can be based on noisy received signal
strength measurements, see, e.g., [1]–[3]. Other classes of
applications include design of composite materials [4], tar-
get tracking [5], recovery of sparse and compressible signals
[6], image sampling and color analysis [7], and acoustic wave
propagation in turbulent fluids [8]. Deterministic optimization
methods are frequently implemented in such noisy-based appli-
cations. However, stochastic optimization techniques provide
an effective approach in the presence of noisy measurements.

While considering gradient-based descent approach, many
methods have been proposed to improve the choices of the
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step size such as the optimal version of Robbins-Monro (RM)
algorithm [9], an accelerated RM algorithm [10], [11], and an
accelerated version of Kesten algorithm [12]. Stable constants
are introduced to the step size in order to improve algorithm
stability [13]. An efficient approach for achieving a second
order adaptive algorithm is presented in [14], where two paral-
lel recursions are implemented for estimating the solution using
NR algorithm, and the other for estimating the Hessian matrix.
Stochastic gradient algorithm over a subset of the parameters
while the rest are held fixed is shown to be an effective approach
[15]. The above review is by no means exhaustive of the type
of problems for which noisy measurements are considered.

Although gradient-based descent methods are shown to be
rather effective, they generally suffer from slow convergence
when contrasted with the NR method. In this letter we inves-
tigate the implementation of the NR method that attempts to
find zeroes of functions which cannot be computed directly, but
only estimated from noisy measurements of the functions. This
letter shows that the traditional NR method cannot guarantee
zero convergence in presence of additive measurement noise.
Consequently, we consider adding a multiplicative gain matrix
to the NR correction factor. In addition, this letter proposes a
novel recursive algorithm providing optimal iterative-varying
gain associated with the NR method. The proposed recursive
algorithm utilizes the statistical measurement error model in
order to construct the iterative-varying gain matrix while min-
imizing the variance of errors. Analytical convergence results
are also provided. The analytical results show that the error
covariance matrix converges to zero, which show the capa-
bility of the proposed algorithm rejecting measurement noise.
Furthermore, two simple examples are provided illustrating
how the proposed method is capable of overcoming some of the
NR common drawbacks. Simulation results are also included
to illustrate the performance abilities of the proposed algorithm
and its advantages over the traditional NR method.

II. PROBLEM FORMULATION

A zero-finding problem gives M functional relations to be
zeroed, that is,

f(z) = 0 (1)

where z ∈ R
N , and f(.) ∈ R

M . The assumption in the zero-
finding setting is that f(.) is not available directly, but must be
estimated through a noisy estimate of f(.), f̂ . In this letter, we
consider noisy observations of f(.) consisting of additive noise,
that is, f̂ = f(.) + ε, and consider unconstrained optimization
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and the case where during each iteration, one measurement of
f(.) is available. We consider the following setting at iterative
instant, k:

f̂(.) = f(.) + g(k)v(k) (2)

where v(k) ∈ R
M a zero-mean white random process, g(k) ∈

R
M×M is a deterministic function. In the neighborhood of ẑ ∈

R
N , while assuming that the elements of f are continuously

differentiable, f can be expanded in Taylor series as follows:

f (ẑ +Δz) = f (ẑ) + J(k)Δz +O
(
Δz2

)

where the elements of the Jacobian matrix, J(.) ∈ R
M×N , are

defined as Jji(k) � ∂fj
∂zi

|ẑ=ẑ(k). In what follows, we neglect
terms of order Δz2 and higher leading to

f (ẑ +Δz) = f (ẑ) + J(k)Δz (3)

Problem Statement: Assume there exists a z such that f(z) =
0. Given erroneous values of f(z), f̂(ẑ), at each time instant,
develop a recursive algorithm such that the variance of (z − ẑ)
is minimized at each time instant.

III. PROPOSED OPTIMAL RECURSIVE ALGORITHM,
CONVERGENCE AND CHARACTERISTICS

This section addresses the problem under consideration. In
particular, the proposed stochastic algorithm leading to opti-
mal gains is developed based on a linearized set of functions
(3), and convergence results are included. Two examples are
also included in order to show how the proposed approach can
be used to overcome the NR common drawbacks. Similar to
Newton-Raphson method, we set f(ẑ(k) + Δz) ≡ 0, and we
also set g(k)v(k) ≡ 0. Thus, it holds

J(k)Δz = −f (ẑ(k)) (4)

We assume that J(k) is full-column rank. If a solution to the
problem f(z) = 0 exists, then it is adequate to multiply both
sides of (4) by Moore–Penrose pseudoinverse of J(k), J†(k) =
[JT (k)J(k)]−1JT (k). Consequently, (4) yields

Δz = −J†(k)f(z) (5)

In this work, we refer to the following iterative method as NR:

ẑ (k + 1) = ẑ(k)− J†(k)f̂ (ẑ(k)) (6)

where we set Δz ≡ ẑ(k + 1)− ẑ(k). However, this solution
may not be optimal in presence of errors or measurement noise,
v(k). In order to possibly find a more suitable approach, we add
a multiplicative gain K(k) ∈ R

N×N , in this fashion:

Δz = −K(k)J†(k)f̂ (ẑ) (7)

Again set Δz ≡ ẑ(k + 1)− ẑ(k) to obtain

ẑ (k + 1) = ẑ(k)−K(k)J†(k)f̂ (ẑ(k)) (8)

Remark 1: Equation (8) resembles the corrector step of
a Kalman filter. However, it is basically quite different. In
particular, a Kalman filter is based on state space of dynamical
systems. For a linear discrete-time invariant stochastic system
and in absence of the input signal, the state-space equation
becomes z(k + 1) = Az(k) +Gw(k), where z(.) represents
the state vector and w(.) represents noise. This article is con-
cerned with finding the zero of f(z), that is, finding z, which
is most likely different than zero, such that f(z) = 0, that is,
in general z �= 0. Assume f(z) is a linear function of z. If
f(z) were to be considered as f(z) = Az(k), then in absence
of noise, the state space equation would become z(k + 1) =
Az(k) = f(z) = 0. The latter leads to z(k + 1) = 0, ∀k, which
cannot be applied to the problem under study as it stands. On
the other hand, the work in [16] presents an iterated Kalman fil-
ter, which adopts the NR iterative optimization steps, however,
the problem addresses state estimation of a nonlinear stochas-
tic discrete-time system, which is different than the problem
addressed in this letter.

Theorem 1: Consider the linear vector function given in (3)
and the method proposed in (8). Assume that there exists a
z such that f(z) = 0, and the Jacobian matrix is full-column
rank, k ≥ 0. The gain K(k) that minimizes the mean-square of
δz(k) � z − ẑ(k) at each kth instant is given in the following
recursive formulas for all k > 0,

K(k) = P (k)(P (k) + F (k)R(k)FT (k))−1 (9)

P (k + 1) = (I −K(k))P (k) (10)

where P (k) � E[δz(k)δzT (k)], F (k) � J†(k)g(k) and
R(k) � E[v(k)vT (k)].

Proof of Theorem 1: Inserting (2) in (8), we obtain
ẑ(k + 1) = ẑ(k)−K(k)J†(k)f(ẑ(k))−K(k)J†(k)g(k)v(k)
From (3), we have f(ẑ + δz) = f(ẑ) + J(k)δz. In what
follows, we use δz(k) = z − ẑ(k) to obtain f(z) = f(ẑ(k))
+ J(k)(z − ẑ(k)). But f(z) = 0, thus f(ẑ(k)) = −J(k)
(z − ẑ(k)), or ẑ(k + 1) = ẑ(k) +K(k)(z − ẑ(k))−K(k)
J†(k)g(k)v(k).

Subtracting both sides of this equation from z and rearrang-
ing terms yield

δz(k + 1) = (I −K(k)) δz(k) +KJ†(k)g(k)v(k) (11)

For compactness, we denote by Pk+1 � P (k + 1), Pk � P (k),
F � J†(k)g(k), K � K(k) and R � E[v(k)vT (k)]. Taking
the covariance on both sides of (11) and observing that
E[δz(k)vT (k)] = 0, we have

Pk+1 = (I −K)Pk(I −K)T +KFRFTKT (12)

Expending terms of (12) yields

Pk+1 = Pk +KPkK
T −KPk − PkK

T +KFRFTKT

(13)

To minimize tr(Pk+1), where tr is the trace operator,
with respect to K, we set ∂tr(Pk+1)

∂K ≡ 0 at each instant,
∂tr(Pk+1)

∂K = +2KPk − 2Pk + 2KFRFT ≡ 0. Therefore,
K = Pk(Pk + FRFT )−1. Inserting this optimal value of K
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in (13) and collecting terms lead to Pk+1 = Pk −KPk +
PkK

T + Pk(Pk + FRFT )−1(Pk + FRFT )KT Cancelling
then collecting terms yield (10). �

Proposition 1: Assume that R > 0 and F is full
rank. If limk→∞ P (k) = 0, then it is necessary to have
limk→∞ K(k) = 0.

Proof of Proposition 1: We first note that FRFT >
0. Since (I −K(k))P (k)(I −K(k))T ≥ 0 for K(k) �= 0
(e.g., in NR, K = I), then (12) implies limk→∞ P (k) �= 0,
limk→∞ P (k) = 0 only if limk→∞ K(k) = 0. �

Remark 2: In presence of measurement errors, the tra-
ditional NR method cannot lead to zero-error convergence.
limk→∞ K(k) = 0 is a necessary condition. The latter requires
an iterative-varying gain.

Theorem 2: Consider the recursive algorithm presented
in (9) and (10). If P (0) > 0 and F (k)R(k)FT (k) > 0,
∀k ≥ 0, then 0 < λ(I −K(k)) < 1, limk→∞ P (k) = 0, and
limk→∞ K(k) = 0, where λ(M) denotes the eigenvalues of
M .

Proof of Theorem 2: Consider I −K = I − Pk(Pk +
FRFT )−1. We first use an induction argument to show
that 0 < λ(I −K) < 1. For k = 0, we have both Pk

and FRFT positive definite, and Pk(Pk + FRFT )−1 =
(I + FRFTP−1

k )−1. Since FRFT > 0 and P−1
k > 0,

then λ(FRFTP−1
k ) > 0. Thus, λ(I + FRFTP−1

k ) > 1.
Therefore, 0 < λ(Pk(Pk + FRFT )−1) < 1 and 0 < λ
(I − Pk(Pk + FRFT )−1) < 1. Consequently, I −K > 0
and λ(P1) > 0. Since the covariance matrix P1 is sym-
metric then P1 > 0. There existsa multiplicative norm
such that ‖I −K‖ < 1, thus ‖P1‖ < ‖P0‖. We use
similar arguments for any k > 0 to show that 0 < λ
(I − Pk(Pk + FRFT )−1) < 1 and ‖Pk+1‖ < ‖Pk‖. There-
fore, ‖Pk‖ is bounded ∀k ≥ 0 and for k →
∞. If limk→∞ Pk = 0, this ends the proof,
else limk→∞ ‖I −K‖ < 1, hence limk→∞
Pk = 0 and from (9) limk→∞ K(k) = 0. �

Remark 3: In absence of measurement errors, R = 0, thus,
(9) implies K = I , (6) and (7) become identical.

Remark 4: The results of Theorems 1 and 2 assume a linear
system of functions without considering modeling errors due to
linearization. Consequently, limk→∞ Pk may not be zero. For
example, if errors due to linearization are added to (3) and mod-
elled as additive zero-mean white noise with covariance Qk ≥
0, then it can be shown that the optimal gain remains Kk =
Pk(Pk + FRFT )−1 and the associated covariance becomes
Pk+1 = (I −K)Pk +Qk, which is always bounded; however,
limk→∞ Pk �= 0. Such a scenario is not considered in the pro-
posed algorithm since the modelling part of such errors is
function specific. In some cases of nonlinearities, Pk and Kk

may converge to zero too early. In order to remedy this problem,
we reset Pk+1 ≡ (I −K)Pk +Qk for an arbitrary Qk after a
couple of iterations.

Remark 5: Although the implementation of the proposed
method is more involved than NR, it is capable of overcoming
some of the NR drawbacks. For example, at a stationary point
or whenever the Jacobian matrix is not full-column rank, NR
fails. The proposed method comes with some tuning flexibil-
ity, in particular, specific selection of P0 and R, may overcome
such problems. We present the following two examples, while
disregarding measurement errors.

Fig. 1. Examples 1 and 2: f(x) and |x− x̂(k)|.

Example 1: Consider
√
x = 0 with initial value x0 = 10.

The NR roots oscillate between x = 10 and x = −10. On the
other hand, when we set P (0) = R = 100, such large values
indicate that initial guess and measurements are unreliable.
The latter forces the proposed algorithm in taking smaller
and smaller steps while searching for a solution. At the 40th
iteration, the solution reaches x = −5× 10−17 ∼= 0, see Fig. 1.

Example 2: Consider x3 + 2x2 − 5x− 1 = 0 with initial
value x0 = −1.9, which is considered close to the stationary
point at x = −2.12. The iteration of NR method gives the root
x = 1.576 instead of the closer root at x = −0.1872. The latter
shows that NR can fail when initial value is close to a station-
ary point. Whereas by employing the proposed method, with a
small value of P (0), e.g., P (0) = 0.5 and R = 3, forces the
algorithm to look for a solution around the initial guess. In
fact, after one iteration we obtain x = −0.1827 and after four
iterations the solution converges to x = −0.187, see Fig. 1.

IV. EXAMPLE 3

In this example, we compare the performance of proposed
scheme with the traditional NR method. In order to illustrate the
performance capabilities of the proposed approach, we consider
a set of nonlinear functions corrupted with measurement noise.
The functions, without noise (1), are given by

f(x) =

⎧⎪⎨
⎪⎩

x3
1 + 2x2

1 + x2
2 + x2 − 5 = 0

1
2x

2
1 + 2x1 − 1

2x
2
2 − 5x2 + x1x2 + 2 = 0

−x3
1 +

1
2x

2
2 − (x1x2)

2
+ 1.5 = 0

(14)

The exact solution of (14) is simply x1 = x2 = 1. According to
the model in (3), the additive measurement noise is given by

g(k)v(k) =⎡
⎣
−1− x̂2(k) 0 0

0 1 + x̂1(k) 0
0 0 −x̂1(k)− x̂2(k)

⎤
⎦
⎡
⎣
v1(k)
v2(k)
v3(k)

⎤
⎦

where x̂i(k), i ∈ {1, 2} represents the estimate and vj(k) ∈
ℵ(0, σ), j ∈ {1, 2, 3} is zero-mean white Gaussian noise with
standard deviation equals to σ. In what follows, we compare the
performance of the NR method (6) with the proposed stochastic
NR (StNR) presented in (8) while using the proposed recursive
algorithm (9) and (10) in order to update the gain K(k) and the
error covariance matrix P (k).
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Fig. 2. Performance of NR versus StNR with σ = 2.

TABLE I
NR VS. STNR: ABSOLUTE ERRORS AT k = 2000

Fig. 3. Errors (in Blue) associated with StNR with σ = 2, 100 ≤ k ≤ 2000.
The dashed plots (in Red) are the square roots of the diagonal elements of P (k).

We set x̂i(0) ≡ 2, i ∈ {1, 2} for both methods and P (0) =
4I and R(k) = σ2I, ∀k. Fig. 2 shows the absolute errors,
AEi � |1− x̂i(k)|, i ∈ {1, 2}, for σ = 2. One hundred inde-
pendent runs, with 2,000 iterations per run, are also conducted
for different values of σ. We extract the final value for each run
and then take the average of absolute errors over the 100 runs,
AEk=2000

i = AVG100runs|1− x̂i(2, 000)|, i ∈ {1, 2}. The val-
ues of AEk=2000

i for different values of σ are listed in
Table I. Fig. 3 shows the errors, corresponding to StNR,
superimposed with the relevant estimates of error standard
deviations extracted from the diagonal elements of P (k).
Whereas Fig. 4 shows the elements of gain K(k). While
examining Table I and Fig. 2 to Fig. 4, the following can be
concluded:

Fig. 4. Elements of the gain K(k) for σ = 2.

• The values in Table I and Fig. 2 demonstrate the superior-
ity of StNR over NR in presence of noisy measurements.
For σ ≥ 2, the errors associated with NR are � 100%.
However, as σ decreases the gap in performance becomes
smaller. Unlike NR, the long-term trend in errors associ-
ated with StNR keep on decreasing regardless the value
of σ; e.g., see Fig. 3. The StNR values listed in Table I
show that the errors at k = 2000 are roughly proportional
to σ.

• Fig. 3 illustrates how well the error covariance matrix
P (k) can estimate the actual error variances. It is impor-
tant to note that (14) is a set of nonlinear functions.
Theorem 1 assumes a vector of linear functions (3). That
is, more accurate estimates would be obtained if (14) were
linear.

• Fig. 4 shows how the gain K(k) decreases as the num-
ber of iterations increases. It is also important to note that
K(k) is diagonally dominate for all k.

IV. CONCLUSION

Proposition 1 of this letter showed that the traditional NR
method cannot guarantee zero convergence in presence of
additive measurement noise. Such convergence requires the
consideration of adding a multiplicative iterative-varying gain
matrix, which convergences to zero. This letter proposed a
novel recursive algorithm providing optimal iterative-varying
gain for linearized functions. It was analytically demonstrated
that this proposed approach is capable of providing zero-
convergence of the error covariance matrix for linear functions
in presence of measurement noise. In addition, the proposed
scheme was shown to overcome common drawbacks of NR
method. An example has been presented illustrating the supe-
riority of the proposed approach over the traditional NR
method while taking into consideration noisy measurement
functions.
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